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Abstract. This paper is the second of three related articles that de-
velop and demonstrate a new optimization-based framework for compu-
tational modeling. The framework uses optimization and control ideas
to assemble and decompose multiphysics operators and to preserve their
fundamental physical properties in the discretization process. One ap-
plication of the framework is in the formulation of robust algorithms for
optimization-based transport (OBT). Based on the theoretical founda-
tions established in Part 1, this paper focuses on the development of an
efficient optimization algorithm for the solution of the remap subproblem
that is at the heart of OBT.

1 Introduction

In this and two companion papers [1, 2] we formulate and study a new
optimization-based framework for computational modeling. One application of
the framework, introduced in Part 1 [1], is in the formulation of a new class of
optimization-based transport (OBT) schemes. OBT schemes combine incremen-
tal remap [3] with the reformulation of the remap subproblem as an inequality-
constrained quadratic program (QP) [4]. In this paper we develop and analyze
an efficient optimization algorithm for the solution of the remap subproblem.

Our algorithm is based on the dual formulation of the remap subproblem. Our
previous work [4] uses the reflective Newton method by Coleman and Li [?] for
the solution of the dual remap subproblem. The Coleman-Li approach handles
general bound-constrained QPs and ensures convergence from remote starting
points using a trust-region globalization. In this paper we focus solely on the
derivation and solution of a first-order optimality system that is specific to the
remap subproblem; in other words, we disregard globalization. In practice, see
Part 3 [2], the resulting Newton method proves sufficiently accurate and robust
in the context of incremental remapping where a nearly feasible and optimal
initial guess for the remap subproblem is typically available.

3 Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.
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2 The Remap Subproblem: Optimization Theory

Optimization-based transport, see Part 1 [1], requires the solution of the remap
subproblem,

min
F̃hij

K∑
i=1

∑
κ̃j∈Ñi

(F̃hij − F̃Tij )2 subject to


F̃hij = −F̃hji
mmin
i ≤ m̃i +

∑
κ̃j∈Ñi

F̃hij ≤ mmax
i ,

(1)

where κ̃j ∈ Ñi denotes j ∈ {j : κ̃j ∈ Ñi}, F̃hij are the unknown mass fluxes,

F̃Tij are the given target fluxes, κ̃i are the cells of the deformed mesh, Ñi are

the corresponding cell neighborhoods, mmin
i and mmax

i are the given local mass
extrema, and m̃i are the given masses on the deformed mesh. We enforce the
antisymmetry constraint F̃hij = −F̃hji explicitly by using only the fluxes F̃hpq for
which p < q. This results in the simplified remap subproblem

min
F̃hij

K∑
i=1

∑
κ̃j∈Ñi
i<j

(F̃hij − F̃Tij )2 subject to

mmin
i − m̃i ≤

∑
κ̃j∈Ñi
i<j

F̃hij −
∑
κ̃j∈Ñi
i>j

F̃hji ≤ mmax
i − m̃i .

(2)

In compact matrix / vector notation problem (2) has the form

min
~F∈RM

1

2
(~F − ~FH)T(~F − ~FH) subject to

~bmin ≤ A~F ≤ ~bmax ,

(3)

where M denotes the number of unique flux variables, F̃hij . We also define
~F ∈ RM , ~FH ∈ RM , ~bmin ∈ RK and ~bmax ∈ RK such that ~Fι(i,j) = F̃hij ,
~FHι(i,j) = F̃Tij , (~bmin)i = mmin

i − m̃i and (~bmax)i = mmax
i − m̃i, respectively, where

ι is an indexing function. Finally we let A ∈ RK×M be a matrix with entries
−1, 0 and 1 defining the inequality constraints in (2) or a related proxy (see
swept-region approximation, [4, Sec. 4.1,4.2]). The matrix A is typically very
sparse, with M > K in 2D and 3D.

In what follows we use two conventions. First, we define the Euclidean inner
product, 〈·, ·〉 : R2m → R, as 〈~x, ~y〉 = ~xT~y, and the Euclidian norm ‖x‖22 =
〈~x, ~x〉 = ~xT~x. Second, we abbreviate the nonnegative orthant as Rm+ = {~x ∈
Rm : ~x ≥ 0}.

Rather than solving (3) directly, we focus on its dual formulation. This allows
us to reformulate the problem into a simpler, bound-constrained optimization
problem.
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Theorem 1. Given the definitions of ~FH ∈ RM , ~bmin ∈ RK , ~bmax ∈ RK , and
A ∈ RK×M from above, let us define Jp : RM → R and Jd : R2K → R as

Jp(~F ) =
1

2
‖~F − ~FH‖22

and

Jd(~λ, ~µ) =
1

2
‖AT~λ−AT~µ‖22 − 〈~λ,~bmin −A~FH〉 − 〈~µ,−~bmax + A~FH〉.

Then, we have that

min
F∈RM

{
Jp(~F ) : ~bmin ≤ A~F ≤ ~bmax

}
= min

(~λ,~µ)∈R2K
+

{
Jd(~λ, ~µ)

}
where we call the first problem the primal and the second problem the dual.
Furthermore,

{~FH + AT(~λ∗ − ~µ∗)} = arg min
F∈RM

{
Jp(~F ) : ~bmin ≤ A~F ≤ ~bmax

}
whenever

(~λ∗, ~µ∗) ∈ arg min
(~λ,~µ)∈R2K

+

{
Jd(~λ, ~µ)

}
.

Proof. We begin with the observation that Jp denotes a strictly convex, con-

tinuous function and that {~F ∈ RM : ~bmin ≤ A~F ≤ ~bmax} denotes a bounded,
closed, convex set. Therefore, a unique minimum exists and is attained. Fur-
thermore, since there exists an ~F such that ~bmin < A~F < ~bmax [1], we satisfy
Slater’s constraint qualification. This tells us that strong duality holds, which
implies that the Lagrangian dual exists and possesses the same optimal value as
the original problem.

Based on this knowledge, we notice that

min
F∈RM

{
Jp(~F ) : ~bmin ≤ A~F ≤ ~bmax

}
= min
F∈RM

max
(~λ,~µ)∈R2K

+

{
Jp(~F )− 〈A~F −~bmin, ~λ〉 − 〈~bmax −AF, ~µ〉

}
= max

(~λ,~µ)∈R2K
+

min
F∈RM

{
Jp(~F )− 〈~F ,AT(~λ− ~µ)〉+ 〈~bmin, ~λ〉 − 〈~bmax, ~µ〉

}
.

Next, we consider the function J : RM → R where

J(~F ) = Jp(~F )− 〈~F ,AT(~λ− ~µ)〉

and (~λ, ~µ) ∈ R2K are fixed. We see that J is strictly convex. Therefore, it attains
its unique minimum when ∇J = 0. Specifically, when

~F − ~FH −AT(~λ− ~µ) = 0,
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which occurs if and only if

~F = ~FH + AT(~λ− ~µ).

Therefore, we may find the optimal solution to our original problem with this
equation when (~λ, ~µ) are optimal. In addition, we may use this knowledge to

simplify our derivation of the dual. Let ω = AT(~λ− ~µ) and notice that

max
(~λ,~µ)∈R2K

+

min
F∈RM

{
Jp(~F )− 〈~F ,AT(~λ− ~µ)〉+ 〈bmin, ~λ〉 − 〈bmax, ~µ〉

}
= max

(~λ,~µ)∈R2K
+

{
Jp(~F

H + ω)− 〈~FH + ω, ω)〉+ 〈bmin, ~λ〉 − 〈bmax, ~µ〉
}

= max
(~λ,~µ)∈R2K

+

{
1

2
‖ω‖22 − 〈~FH , ω〉 − ‖ω‖22 + 〈bmin, ~λ〉 − 〈bmax, ~µ〉

}
= max

(~λ,~µ)∈R2K
+

{
−1

2
‖AT(~λ− ~µ)‖22 − 〈A~FH , ~λ− ~µ〉+ 〈bmin, ~λ〉 − 〈bmax, ~µ〉

}
= min

(~λ,~µ)∈R2K
+

{
1

2
‖AT(~λ− ~µ)‖22 + 〈A~FH , ~λ− ~µ〉 − 〈bmin, ~λ〉+ 〈bmax, ~µ〉

}
= min

(~λ,~µ)∈R2K
+

{
1

2
‖AT~λ−AT~µ‖22 − 〈~λ,~bmin −A~FH〉 − 〈~µ,−~bmax + A~FH〉

}
= min

(~λ,~µ)∈R2K
+

{
Jd(~λ, ~µ)

}
.

Hence, we see the equivalence between our two optimization problems and note
that the equation ~F = ~FH + AT(~λ − ~µ) allows us to find an optimal primal
solution given an optimal solution to the dual. �

Although the primal problem is strictly convex and possesses a unique opti-
mal solution, the dual formulation does not. Rather, the dual problem is convex,
but not strictly convex, so multiple minima may exist. Second, our formula for
reconstructing the primal solution from the dual depends on an optimal dual
solution. If the solution to the dual is not optimal, the reconstruction formula
may generate infeasible solutions. With these points in mind, we require two
additional definitions before we may proceed to our optimization algorithm.

Definition 1. We define the diagonal operator, Diag : Rm → Rm×m, as

[Diag(~x)]ij =

{
~xi i = j
0 i 6= j

.

Definition 2. For some symmetric, positive semidefinite H ∈ Rm×m and some
~b ∈ Rm, we define the operator vH,~b : Rm → Rm as

vH,~b(~x) =

{
~xi [H~x+~b]i ≥ 0

1 [H~x+~b]i < 0

}
.

When both H and ~b are clear from the context, we abbreviate this function as v.
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In order to solve the dual optimization problem, we use a simplified version
of the locally convergent Coleman-Li algorithm [?]. The key to this algorithm
follows from the following lemma.

Lemma 1. Let H ∈ Rm×m be symmetric, positive semidefinite and let ~b ∈ Rm.
Then, for some ~x∗ ≥ 0, we have that

~x∗ ∈ arg min
x∈Rm+

{
1

2
〈H~x, ~x〉+ 〈~b, ~x〉

}
⇐⇒ Diag(v(~x∗))(H~x∗ +~b) = 0.

Proof. We begin with the observation that since H is symmetric, positive
semidefinite, the problem

min
x∈Rm+

{
1

2
〈H~x, ~x〉+ 〈~b, x〉

}
represents a convex optimization problem with a coercive objective and a closed,
convex set of constraints. Therefore, a minimum exists and the first order opti-
mality conditions become sufficient for optimality.

In the forward direction, we assume that we have an optimal pair (~x∗, ~λ∗)
that satisfy the first order optimality conditions,

H~x∗ +~b− ~λ∗ = 0

~x∗ ≥ 0, ~λ∗ ≥ 0

Diag(~x∗)~λ∗ = 0.

According to these equations, ~λ∗ = H~x∗ + ~b and ~λ∗ ≥ 0. This implies that
H~x∗+~b ≥ 0. Therefore, according to the definition of v, [Diag(v(~x∗))]ii = ~x∗i for
all i. This tells us that

[Diag(v(~x∗))(H~x∗ +~b)]i = ~x∗i [H~x
∗ +~b]i = ~x∗i

~λ∗i = 0

where the final equality follows from our fourth optimality condition, comple-
mentary slackness.

In the reverse direction, we assume that Diag(v(~x∗))(H~x∗ +~b) = 0 for some
~x∗ ∈ Rm+ . Since the problem

min
x∈Rm+

{
1

2
〈H~x, ~x〉+ 〈~b, ~x〉

}
represents a convex optimization problem, it is sufficient to show that the first
order optimality conditions hold for ~x∗ and some ~λ∗. Of course, we immediately
see that we satisfy primal feasibility since ~x∗ ≥ 0 by assumption.

Due to the definition of v, our initial assumption implies that H~x∗+~b ≥ 0. If
this were not the case, then there would exist an i such that [H~x∗+~b]i < 0. In this

case, we see that [v(~x∗)]i = 1 and that [Diag(v(~x∗))(H~x∗+~b)]i = [H~x∗+~b]i < 0,

which contradicts our initial assumption. Therefore, H~x∗ +~b ≥ 0. As a result,
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let us set ~λ∗ = H~x∗ +~b. This allows us to satisfy our first optimality condition,
H~x∗ +~b− ~λ∗ = 0 as well as our third, ~λ∗ ≥ 0.

In order to show that we satisfy complementary slackness, we combine our
initial assumption as well as our knowledge that H~x∗ +~b ≥ 0 to see that

0 = Diag(v(~x∗))(H~x∗ +~b)

= Diag(~x∗)(H~x∗ +~b)

= Diag(~x∗)~λ∗.

Therefore, we satisfy our final optimality condition and, hence, ~x∗ denotes an
optimal solution to the optimization problem. �

The above lemma allows us to recast a bound-constrained, convex quadratic
optimization problem into a piecewise differentiable system of equations. In order
to solve this system of equations, we apply Newton’s method. Before we do so,
we require one additional definition and a lemma.

Definition 3. For some symmetric, positive semidefinite H ∈ Rm×m and some
~b ∈ Rm, we define the operator KH,~b : Rm → Rm×m as

[KH,~b(~x)]ij =

{
1 [H~x+~b]i ≥ 0

0 [H~x+~b]i < 0
.

When both H and ~b are clear from the context, we abbreviate this operator as K.

Lemma 2. Let H ∈ Rm×m be symmetric, positive definite, ~b ∈ Rm, and define
the function J : Rm → R as

J(~x) = Diag(v(~x))(H~x+~b).

Then, we have that

J ′(~x) = K(~x)Diag(H~x+~b) + Diag(v(x))H.

Proof. Let us begin by assessing the derivative of v. We notice that

[v(~x+ t~η)]i =

{
~xi + t~ηi [H~x+ b]i ≥ 0
1 [H~x+ b]i < 0

.

Therefore, from a piecewise application of Taylor’s theorem, we see that

[v′(~x)~η]i =

{
~ηi [H~x+ b]i ≥ 0
0 [H~x+ b]i < 0

.

Next, we apply a similar technique to J . Let us define g : Rm → R so that
g(~x) = H~x+~b. Then, we see that

J(~x+ t~η) =Diag(v(~x+ t~η))(H(~x+ t~η) +~b)

=Diag(v(~x) + tv′(~x)~η + o(|t|))(H~x+~b+ t~η)

=Diag(v(~x))g(x̄) + t (Diag(v(~x))H~η + Diag(v′(~x)~η)g(x̄)) + o(|t|).
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Hence, from a piecewise application of Taylor’s theorem, we have that

J ′(~x)~η = Diag(v(~x))H~η + Diag(v′(~x)~η)(H~x+~b)

= Diag(v(~x))H~η +K(~x)Diag(H~x+~b)~η.

Therefore, J ′(~x) = K(~x)Diag(H~x+~b) + Diag(v(~x))H. �

The preceding lemma allows us to formulate Newton’s method where we seek
a step ~p ∈ Rm such that J ′(~x)~p = −J(~x). Although the operator J ′(~x) is well
structured, it is nonsymmetric. We symmetrize the system as follows.

Definition 4. For some symmetric, positive semidefinite H ∈ Rm×m and some
~b ∈ Rm, we define the operator DH,~b : Rm+ → Rm×m as

DH,~b(~x) = Diag(vH,~b(~x))1/2.

When both H and ~b are clear from the context, we abbreviate this operator as D.

Lemma 3. Let H ∈ Rm×m be symmetric, positive semidefinite and let ~b ∈ Rm.
Then, we have that

(K(~x)Diag(H~x+~b) + Diag(v(~x))H)~p = −Diag(v(~x))(H~x+~b)

⇐⇒(K(~x)Diag(H~x+~b) +D(~x)HD(~x))~q = −D(~x)(H~x+~b)

where ~p = D(x)~q.

Proof. Notice that

0 = (K(~x)Diag(H~x+~b) + Diag(v(~x))H)~p+ Diag(v(~x))(H~x+~b)

= (K(~x)Diag(H~x+~b) +D(~x)2H)~p+D(~x)2(H~x+~b)

= D(~x)((D(~x)−1K(~x)Diag(H~x+~b) +D(~x)H)~p+D(~x)(H~x+~b))

= D(~x)((D(~x)−1K(~x)Diag(H~x+~b) +D(~x)H)D(~x)~q +D(~x)(H~x+~b))

= D(~x)((K(~x)Diag(H~x+~b) +D(~x)HD(~x))~q +D(~x)(H~x+~b)),

which occurs if and only if

0 = (K(~x)Diag(H~x+~b) +D(~x)HD(~x))~q +D(~x)(H~x+~b)

since D(~x) is nonsingular. �

Properly, we require a line search to ensure feasible iterates. However, we
can be far more aggressive in practice. In order to initialize the algorithm, we
use the starting iterate of (~λ, ~µ) = (~0,~0). This corresponds to a primal solution

where ~F = ~FH . Since the optimal solution to the primal problem is close to
the target ~FH , we expect the optimal solution to the dual problem to reside
in a neighborhood close to zero. As a result, Newton’s method should converge
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quadratically to the solution with a step size equal to one. Therefore, we ignore
the feasibility constraint and always use a unit step size. Sometimes, this allows
the dual solution to become slightly infeasible, but the amount of infeasibility
tends to be small. In practice, the corresponding primal solution is always fea-
sible and produces good results. In order to allow infeasible solutions, we must
use the original formulation of Newton’s method rather than the symmetric
reformulation. Namely, the operator D becomes ill-defined for infeasible points.

When we combine the above pieces, we arrive at the final algorithm.

Algorithm 1: Dual algorithm for the solution of the remap subproblem

1. Define H ∈ R2K×2K and b ∈ R2K as

H =

[
AAT −AAT

−AAT AAT

]
~b =

[
A~FH −~bmin

−A~FH +~bmax

]
.

2. Initialize ~x = ~0.
3. Until ‖Diag(v(~x))(H~x +~b)‖ becomes small or we exceed a fixed number of

iterations.
(a) When feasible, solve

(K(~x)Diag(H~x +~b) + D(~x)HD(~x))~q = −D(~x)(H~x +~b)

and set ~p = D(x)~q. Otherwise, solve

(K(~x)Diag(H~x +~b) + Diag(v(~x))H)~p = −Diag(v(~x))(H~x +~b).

(b) Set ~x = ~x + ~p.

References

1. Bochev, P., Ridzal, D., Young, D.: Optimization–based modeling with applications
to transport. Part 1. Abstract formulation. In Lirkov, I., Margenov, S., Wasniewski,
J., eds.: Proceedings of LSSC 2011. Springer Lecture Notes in Computer Science
(Submitted 2011)

2. Ridzal, D., Bochev, P., Young, J., Peterson, K.: Optimization–based modeling with
applications to transport. part 3. Implementation and computational studies. In
Lirkov, I., Margenov, S., Wasniewski, J., eds.: Proceedings of LSSC 2011. Springer
Lecture Notes in Computer Science (Submitted 2011)

3. Dukowicz, J.K., Baumgardner, J.R.: Incremental remapping as a trans-
port/advection algorithm. Journal of Computational Physics 160(1) (2000) 318
– 335

4. Bochev, P., Ridzal, D., Scovazzi, G., Shashkov, M.: Formulation, analysis and nu-
merical study of an optimization-based conservative interpolation (remap) of scalar
fields for arbitrary lagrangian-eulerian methods. Journal of Computational Physics
In press (2011)


